Processing math: 7%




<<345678>>
26.

Tangents are drawn to the hyperbola x29y24=1 parallel to the straight line 2x-y=1.The points of contacts of the tangents on the hyperbola are


A) (922,12)

B) (922,12)

C) (33,22)

D) (33,22)



27.

If S be the area of the region enclosed   by y^{e^{-x^{2}}}, y=0,x=0 and x=1 , then


A) S \geq \frac{1}{e}

B) S \geq 1-\frac{1}{e}

C) S \leq \frac{1}{4} \left(1+\frac{1}{\sqrt{e}}\right)

D) S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}} \left(1-\frac{1}{\sqrt{2}}\right)



28.

Let \theta , \phi \epsilon [0,2\pi] be such that 2 \cos \theta(1-\sin \phi)=\sin^{2} \theta

\left( \tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right)\cos \phi-1,

 \tan (2\pi-\theta)>0

  and -1 < \sin \theta < -\frac{-\sqrt{3}}{2} then , \phi cannot satisfy 


A) 0&lt; \phi &lt; \frac{\pi}{2}

B) \frac{\pi}{2} &lt; \phi &lt; \frac{4 \pi}{3}

C) \frac{4 \pi}{3} &lt; \phi &lt; \frac{3 \pi}{2}

D) \frac{3 \pi}{2} &lt; \phi &lt; 2 \pi



29.

A ship is fitted with with three engines E_{1},E_{2} and E_{3}. The engines function independently of each other with respective probabilities 1/2,1/4 and 1/4. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_{1},X_{2} and X_{3} denotes,respectively the  events that engines E_{1},E_{2} and E_{3} are functioning .Which of the following is/are true?

 


A) P[X_{1}^{c} X]

B) P[Exactly two engines of the ship are functioning x]7/8

C) P[X|X_{2}]=\frac{5}{16}

D) P[X|X_{1}]=\frac{7}{16}



30.

 If y(x) satisfies the differential equation y'-y \tan x=2 x \sec x and y(0)  , then 


A) y\left(\frac{\pi}{4}\right)= \frac{\pi^{2}}{8 \sqrt{2}}

B) y' \left(\frac{\pi}{4}\right)= \frac{\pi^{2}}{18}

C) y\left(\frac{\pi}{3}\right)= \frac{\pi^{2}}{9}

D) y'\left(\frac{\pi}{3}\right)= \frac{4 \pi^{}}{3}+\frac{2\pi^{2}}{3 \sqrt{3}}



<<345678>>