Answer:
Option A,B
Explanation:
$f(\cos 4 \theta)=\frac{2}{2-\sec^{2} \theta}$ .......(i)
at , $\cos 4 \theta=\frac{1}{3}$
$\Rightarrow$ $2 \cos^{2} 2 \theta-1=\frac{1}{3}$
$\Rightarrow$ $\cos^{2} 2 \theta=\frac{2}{3}$
$\Rightarrow$ $ \cos 2 \theta= \pm \sqrt{\frac{2}{3}}$ ........(ii)
$\therefore$ $f(\cos 4 \theta)=\frac{2 \cos^{2} \theta}{2 \cos^{2} \theta-1}$
=$ \frac{1+ \cos 2 \theta}{\cos 2 \theta}$
$\Rightarrow$ $f\left(\frac{1}{3}\right)=1 \pm\sqrt{\frac{3}{2}}$ from eq (ii)