12345>>
1.

Let$ f:(-1,1)\rightarrow R$ be such  that  $f(\cos 4 \theta)=\frac{2}{2 -\sec^{2} \theta}$  for 

$\theta \epsilon\left(0,\frac{\pi}{4}\right)\cup\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ then, the value (s) of $f(\frac{1}{3})$ is/are 


A) $1-\sqrt{\frac{3}{2}}$

B) $1+\sqrt{\frac{3}{2}}$

C) $1-\sqrt{\frac{2}{3}}$

D) $1+\sqrt{\frac{2}{3}}$



2.

If the adjoint of a 3x 3 matrix P is 

$\begin{bmatrix}1 & 4&4 \\2 & 1&7\\1&1&3 \end{bmatrix}$, then the possible value(s) of the determinant of P is,/are


A) -2

B) -1

C) 1

D) 2



3.

If the straight lines $\frac{x-1}{2}=\frac{y+1}{K}=\frac{z}{2}$  and  $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{k}$ are coplanar, then the plane (s) containing  these two lines is/are 


A) y+2z=-1

B) y+z=-1

C) y-z=-1

D) y-2z=-1



4.

For every integer n, let  $a_{n}$  and $b_{n}$ be real numbers. Let  function $f:R \rightarrow R$ be given by 

$f(x)=\begin{cases}a_{n}+\sin \pi x & for x\epsilon[2n,2n+1] \\b_{n}+\cos \pi x & for x \epsilon (2n-1,2n)\end{cases}$

for all integers n, 

If f is continuous ,  then which of the following hold9s) for all n?


A) $a_{n-1}-b_{n-1}=0$

B) $a_{n}-b_{n}=1$

C) $a_{n}-b_{n+1}=1$

D) $a_{n-1}-b_{n}=-1$



5.

 If $f(x)= \int_{0}^{x} e^{t^{2}}(t-2)(t-3) dt,\forall x \epsilon (0,\infty),then$


A) f has a local maximum at x=2

B) f is decreasing on (2,3)

C) there exist some $ c \epsilon(0,\infty) $such that $f^{"}(c)=0$

D) f has a local minimum at x=3



12345>>