Answer:
Option B
Explanation:
Concept involved use of Newton leibnits formula
i.e, $\frac{d}{dx}\left\{\int_{g(x)}^{f(x)} \phi(t) dt\right\}=\phi (f(x)).f'(x)-\phi (g(x)).g'(x)$
Sol. Here , $f(x)(1-x)^{2} \sin^{2}x+x^{2},$ for all x
$g(x)=\int_{1}^{x} \left(\frac{2(t-1)}{t+1}-\log(t)\right)f(t)dt$
$\forall x \epsilon (1, \infty)$
Here,
$f(x)=(1-x)^{2}\sin^{2} x+x^{2}$ for all x
and $g(x)=\int_{1}^{x} \left(\frac{2(t-1)}{t+1}-\log t \right) f(t) dt,$
$\Rightarrow$ $g'(x)=\left\{\frac{2(x-1)}{x+1}-\log x\right\}f(x) (+ve)....(i)$
for g'(x) to be increasing or decreasing
Let $\phi(x)=\frac{2(x-1)}{(x+1)}-\log x$
$ \phi'(x)= \frac{4}{(x+1)^{2}}-\frac{1}{x}=\frac{-(x-1)^{2}}{x(x+1)^{2}}$
$\phi '(x) <0,$ for x >1
$\Rightarrow$ $\phi (x) < \phi(1) \Rightarrow \phi (x) <0$......(ii)
For Eqs.(i) and (ii) , we get
$g'(x) <0$ for $ x \epsilon (1 ,\infty)$
$\therefore$ g(x) is decreasing for $ x \epsilon (1 ,\infty)$