<<12345>>
11.

let $f(x)=(1-x)^{2}\sin^{2} x+x^{2}$ for all x $ \epsilon R $ and 

let $g(x)=\int_{1}^{x} \left(\frac{2(t-1)}{t+1}-ln t\right) f(t) dt,$ for all x $ \epsilon (1,\infty)$ 

consider the statements

P:  There exists some $x \epsilon R$ such that 

  $f(x)+2x=2(1+x^{2})$

Q:There exists some  $x \epsilon R$ such that 

   2f(x)+1=2x(1+x)

 Then 


A) Both P and Q are true

B) P is true and Q is false

C) P is false and Q is true

D) Both P and Q are false



12.

let $f(x)=(1-x)^{2}\sin^{2} x+x^{2}$ for all x $ \epsilon R $ and 

let $g(x)=\int_{1}^{x} \left(\frac{2(t-1)}{t+1}-ln t\right) f(t) dt,$ for all x $ \epsilon (1,\infty)$ 

which of the following is true?


A) g is increasing on $(1, \infty)$

B) g is decreasing on $(1, \infty)$

C) g is increasing on (1, 2) and decreasing on $(2,\infty)$

D) g is decreasing on (1, 2) and increasing on $(2,\infty)$



13.

Let $\alpha(a) $ and $\beta(a)$ be the roots of the equation

$(\sqrt[3]{1+a}-1)x^{2}-(\sqrt{1+a}-1)x$

+$(\sqrt[6]{1+a}-1)=0$ where a>-1,

 Then , $\lim_{a \rightarrow {0^{+}}}\alpha(a)$ and $\lim_{a \rightarrow {0^{+}}}\beta(a)$ are 


A) $-\frac{5}{2} and $ 1

B) $-\frac{1}{2}$ and - 1

C) $-\frac{7}{2}$ and 2

D) $-\frac{9}{2}$ and 3



14.

Let $a_{1},a_{2},a_{3}.......$ be in a harmonic progression with  $a_{1}=5$ and $a_{20}=25$. The least  positive integer n for which $a_{n} <0$ is 


A) 22

B) 23

C) 24

D) 25



15.

If P is a 3x3 matrix such that $P^{T} =2P+I$, where $p^{T}$  is the transpose of P and I is the 3 x 3 identity matrix, then there exists a column matrix

$X=\begin{bmatrix}x \\y \\z \end{bmatrix}\neq\begin{bmatrix}0 \\0 \\0 \end{bmatrix}$ such that


A) $PX=\begin{bmatrix}0 \\0 \\0 \end{bmatrix}$

B) PX=X

C) PX=2X

D) PX=-X



<<12345>>