<<45678
36.

The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is


A) 75

B) 150

C) 210

D) 243



37.

Let  $f(x)=\begin{cases}x^{2}|\cos \frac{\pi}{x}, & x \neq 0\\0 ,& x = 0\end{cases}$ then f is 


A) differentiable both at x = 0 and at x=2

B) differentiable at x=0 but not differentiable at x=2

C) not differentiable at x=0 but differentiable at x=2

D) differentiable neither at x=0 nor at x=2



38.

Let z be a complex number such that the imaginary part of z is non-zero and $a=z^{2}+z+1$  is real. Then, a cannot take the value


A) -1

B) $\frac{1}{3}$

C) $\frac{1}{2}$

D) $\frac{3}{4}$



39.

The integral  $\int  \frac{\sec^{2}x}{(\sec x+\tan x)^{9/2}}dx$ equals to (for some arbitrary constant K)


A) $ \frac{-1}{(\sec x+\tan x)^{11/2}}\left\{\frac{1}{11}-\frac{1}{7}\left(\sec x+\tan x\right)^{2}\right\}+K$

B) $ \frac{1}{(\sec x+\tan x)^{11/2}}\left\{\frac{1}{11}-\frac{1}{7}\left(\sec x+\tan x\right)^{2}\right\}+K$

C) $ \frac{-1}{(\sec x+\tan x)^{11/2}}\left\{\frac{1}{11}+\frac{1}{7}\left(\sec x+\tan x\right)^{2}\right\}+K$

D) $ \frac{1}{(\sec x+\tan x)^{11/2}}\left\{\frac{1}{11}+\frac{1}{7}\left(\sec x+\tan x\right)^{2}\right\}+K$



40.

The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4)  with the plane 5x-4y-z=1.

If S is the foot of the 4. perpendicular drawn from the point T(2,1,4) to QR , then the length of the line segment PS is 


A) $\frac{1}{\sqrt{2}}$

B) $\sqrt{2}$

C) 2

D) $2 \sqrt{2}$



<<45678