Answer:
Option A,D
Explanation:
Concept lnvolved. Linear differential equation under one variable.
dydx+Py=Q ; IF=e∫Pdx
∴ Solution is , y(IF)=∫Q.(IF)dx+C
Sol. y′−ytanx=2xsecx and y(0)=0$
⇒ dydx−ytanx=2xsecx
∴ IF=∫e−tanxdx=elog|cosx|=cosx
Solution is
y.cosx=∫2x.secx.cosxdx+C
⇒ y.cosx=x2+C
As y(0)=0⇒ C=0
∴ y=x2secx
Now, y(π4)=π28√2
⇒ y′(π4)=π√2+π28√2
⇒ y(π3)=2π29
⇒ y′(π3)=4π3+2π23√3