1)

 If y(x) satisfies the differential equation $y'-y \tan x=2 x \sec x$ and y(0)  , then 


A) $y\left(\frac{\pi}{4}\right)= \frac{\pi^{2}}{8 \sqrt{2}}$

B) $y' \left(\frac{\pi}{4}\right)= \frac{\pi^{2}}{18}$

C) $y\left(\frac{\pi}{3}\right)= \frac{\pi^{2}}{9}$

D) $y'\left(\frac{\pi}{3}\right)= \frac{4 \pi^{}}{3}+\frac{2\pi^{2}}{3 \sqrt{3}}$

Answer:

Option A,D

Explanation:

Concept lnvolved. Linear differential equation under one variable.

 $\frac{dy}{dx}+Py=Q$  ; $IF=e^{\int P dx}$

 $\therefore$    Solution is  , $y(IF)= \int Q. (IF) dx+C$

Sol. $ y'- y \tan x=2x \sec x $ and y(0)=0$

 $\Rightarrow$ $ \frac{dy}{dx}-y \tan x=2 x \sec x$

 $\therefore$     $IF= \int e^{-\tan x} dx=e^{\log |\cos x|}=\cos x$

 Solution is 

  $y. \cos x=\int 2x.\sec x.\cos x dx+C$

 $\Rightarrow$   $y. \cos x=x^{2}+C$

 As   y(0)=0$\Rightarrow$ C=0

 $\therefore$   $y=x^{2}\sec x$

 Now, $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8\sqrt{2}}$

$\Rightarrow$  $y'\left(\frac{\pi}{4}\right)=\frac{\pi^{}}{\sqrt{2}}+\frac{\pi^{2}}{8\sqrt{2}}$

$\Rightarrow$  $y\left(\frac{\pi}{3}\right)=\frac{2\pi^{2}}{9}$

$\Rightarrow$  $y'\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3\sqrt{3}}$