Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

 If y(x) satisfies the differential equation yytanx=2xsecx and y(0)  , then 


A) y(π4)=π282

B) y(π4)=π218

C) y(π3)=π29

D) y(π3)=4π3+2π233

Answer:

Option A,D

Explanation:

Concept lnvolved. Linear differential equation under one variable.

 dydx+Py=Q  ; IF=ePdx

     Solution is  , y(IF)=Q.(IF)dx+C

Sol. yytanx=2xsecx and y(0)=0$

  dydxytanx=2xsecx

      IF=etanxdx=elog|cosx|=cosx

 Solution is 

  y.cosx=2x.secx.cosxdx+C

    y.cosx=x2+C

 As   y(0)=0 C=0

    y=x2secx

 Now, y(π4)=π282

  y(π4)=π2+π282

  y(π3)=2π29

  y(π3)=4π3+2π233