Answer:
Option B,D
Explanation:
Concept involved It is based on the law of total probability and Bay's Law.
Description of Situation It is given that
ship would work if at least two of engineers must work. If X be an event that the ship works.
Then $X \Rightarrow$ either any two of $E_{1},E_{2},E_{3}$ works
or all three engines $E_{1},E_{2},E_{3}$ works
Sol. Given $P(E_{1})=\frac{1}{2},P(E_{2})=\frac{1}{4},P(E_{3})=\frac{1}{4}$
$\therefore$
$P(X)=$
$\left\{P(E_{1}\cap E_{2}\cap \overline{E_{3}})+P(E_{1}\cap \overline{E_{2}}\cap E_{3}) + P(\overline{E_{1}}\cap E_{2}\cap E_{3})+P(E_{1}\cap E_{2}\cap E_{3})\right\}$
=$\left(\frac{1}{2}.\frac{1}{4}.\frac{3}{4}+\frac{1}{2}.\frac{3}{4}.\frac{1}{4}+\frac{1}{2}.\frac{1}{4}.\frac{1}{4}\right)+\left(\frac{1}{2}.\frac{1}{4}.\frac{1}{4}\right)$
=$\frac{1}{4}$
Now, (a) $P(X_{1}^{c}/X)$
$=P\left(\frac{X_{1}^{c}\cap X}{P(X)}\right)=\frac{P(\overline {E_{1}} \cap E_{2}\cap E_{3})}{P(X)}$
$=\frac{\frac{1}{2}.\frac{1}{4}.\frac{1}{4}}{\frac{1}{4}}=\frac{1}{8}$
(b)
P (Exactly two engines of the ship are functioning)
$=\frac{P(E_{1}\cap E_{2}\cap\overline{E_{3}})+P(E_{1}\cap \overline{E_{2}}\cap E_{3})+P(\overline{E_{1}}\cap E_{2}\cap E_{3})}{P(X)}$
=$\frac{\frac{1}{2}.\frac{1}{4}.\frac{3}{4}+\frac{1}{2}.\frac{3}{4}.\frac{1}{4}+\frac{1}{2}.\frac{1}{4}.\frac{1}{4}}{\frac{1}{4}}=\frac{7}{8}$
(c) $P\left(\frac{X}{X_{2}}\right)=\frac{P(X \cap X_{2})}{P(X_{2})}$
=P( ship is operating with $E_{2}$ function )/ $P{X_{2}}$
=$\frac{P(E_{1}\cap E_{2}\cap\overline{E_{3}})+P(\overline{E_{1}}\cap E_{2}\cap{E_{3}})+P(E_{1}\cap E_{2}\cap{E_{3}})}{P(E_{2})}$
$=\frac{\frac{1}{2}.\frac{1}{4}.\frac{3}{4}+\frac{1}{2}.\frac{1}{4}.\frac{1}{4}+\frac{1}{2}.\frac{1}{4}.\frac{1}{4}}{\frac{1}{4}}=\frac{5}{8}$
(d) $P(X/X_{1})=\frac{P(X\cap X_{1})}{P(X_{1})}$
$=\frac{\frac{1}{2}.\frac{1}{4}.\frac{1}{4}+\frac{1}{2}.\frac{3}{4}.\frac{1}{4}+\frac{1}{2}.\frac{1}{4}.\frac{3}{4}}{\frac{1}{4}}=\frac{7}{16}$