Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let θ , ϕϵ[0,2π] be such that 2cosθ(1sinϕ)=sin2θ

(tanθ2+cotθ2)cosϕ1,

 tan(2πθ)>0

  and 1<sinθ<32 then , ϕ cannot satisfy 


A) 0&lt; \phi &lt; \frac{\pi}{2}

B) \frac{\pi}{2} &lt; \phi &lt; \frac{4 \pi}{3}

C) \frac{4 \pi}{3} &lt; \phi &lt; \frac{3 \pi}{2}

D) \frac{3 \pi}{2} &lt; \phi &lt; 2 \pi

Answer:

Option A,C,D

Explanation:

Concept lnvolved. It is based on range of sin x i.e., [-1,1] and the internal for a< x< b.

 Description  of situation As θ,ϕϵ[0,2π] and

  tan(2πθ)0,1<sinθ<32

 tan(2πθ)>0   tanθ>0

   θϵ II or IV quadrant

 also, 1<sinθ<32

23112021291_k2.PNG

 

    4π3<θ<5π3 but θϵ II or IV  quadrant 

     3π2<θ<5π3 .....(i)

 Sol. here

 2cosθ(1sinϕ)

                       =sin2θ(tanθ2+cotθ2)cosϕ1

   2cosθ2cosθsinϕ

  = sin2θ(sin2θ2+cos2θ2sinθ2cosθ2)cosϕ1

 =2cosθ2cosθsinϕ

                              =2sin2θ(1sinθ)cosϕ1

 =2cosθ+1=2sinϕcosθ+2sinθcosϕ

           2cosθ+1=2sin(θ+ϕ).....................(ii)

 From Eq.(i)

   3π2<θ<5π3 2cosθ+1ϵ(1,2)

     1<sin(θ+ϕ)<2

   12<sin(θ+ϕ)<1......(iii)

   π6<θ+ϕ<5π6 or 13π6<θ+ϕ<17π6

   π6θ<ϕ<5π6θ

 or 13π6θ<ϕ<(17π6)θ

  ϕϵ(3π2,2π3)or(2π3,7π6),

as θϵ(3π2,5π3)