1)

If S be the area of the region enclosed   by $ y^{e^{-x^{2}}}$, y=0,x=0 and x=1 , then


A) $ S \geq \frac{1}{e}$

B) $ S \geq 1-\frac{1}{e}$

C) $S \leq \frac{1}{4} \left(1+\frac{1}{\sqrt{e}}\right)$

D) $S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}} \left(1-\frac{1}{\sqrt{2}}\right)$

Answer:

Option A,B,D

Explanation:

Concept  involved
(i) Area of region f(x) bounded between x=a to x=b is

23112021168_k3.PNG

 $\int_{a}^{b} f(x) dx=$ sum of areas of rectangle  shown in shaded part

 (ii) if $f(x)  \geq g(x) $ when defined in [a, b]

$\Rightarrow$   $\int_{a}^{b} f(x) dx \geq\int_{a}^{b} g(x) dx$

Description of Situation As the given curve y =$e^{-x^{2}}$  cannot be integrated thus we
have to bound this function by using above  mentioned concept 

 sol. Graph for , $y=e^{-x^{2}}$

23112021596_d4.PNG

 since , $x^{2} \leq x$ when $x \epsilon [0,1]$

 $\Rightarrow$  $-x^{2} \geq  -x$ or $e^{-x^{2}} \geq e^{-x}$

$\therefore$     $\int_{0}^{1} e^{-x^{2}} dx \geq \int_{0}^{1} e^{-x} dx$

 $\Rightarrow$  $S\geq -(e^{-x})_{0}^{1} =1-\frac{1}{e}$........(i)

 Also, $\int_{0}^{1} e^{-x^{2}} dx \leq $ area of two rectangle 

 $\leq \left(1\times \frac{1}{\sqrt{2}}\right)+\left(1-\frac{1}{\sqrt{2}}\right)\times\frac{1}{\sqrt{e}}$

$\leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$..........(ii)

$\therefore$  $ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)\geq S \geq1-\frac{1}{e}$

 [from Eqs.(i) and (ii) ]