Processing math: 100%


1)

If S be the area of the region enclosed   by yex2, y=0,x=0 and x=1 , then


A) S1e

B) S11e

C) S14(1+1e)

D) S12+1e(112)

Answer:

Option A,B,D

Explanation:

Concept  involved
(i) Area of region f(x) bounded between x=a to x=b is

23112021168_k3.PNG

 baf(x)dx= sum of areas of rectangle  shown in shaded part

 (ii) if f(x)g(x) when defined in [a, b]

   baf(x)dxbag(x)dx

Description of Situation As the given curve y =ex2  cannot be integrated thus we
have to bound this function by using above  mentioned concept 

 sol. Graph for , y=ex2

23112021596_d4.PNG

 since , x2x when xϵ[0,1]

   x2x or ex2ex

     10ex2dx10exdx

   S(ex)10=11e........(i)

 Also, 10ex2dx area of two rectangle 

 (1×12)+(112)×1e

12+1e(112)..........(ii)

  12+1e(112)S11e

 [from Eqs.(i) and (ii) ]