<<12345>>
16.

The value of the integral 

$\int_{-\pi /2}^{\pi /2} \left(x^{2}+\log\frac{\pi-4}{\pi+4}\right)\cos x dx$ is 


A) 0

B) $\frac{\pi^{2}}{2}-4$

C) $\frac{\pi^{2}}{2}+4$

D) $\frac{\pi^{2}}{2}$



17.

Four fair dice $D_{1},D_{2},D_{3}$ and $D_{4}$ each having  six faces numbered 1, 2,3, 4, 5 and 6 are rolled simultaneously. The  probability that $D_{4}$  shows a number

appearing on one of  $D_{1},D_{2}$ and $,D_{3}$ is 


A) $\frac{91}{216}$

B) $\frac{108}{216}$

C) $\frac{125}{216}$

D) $\frac{127}{216}$



18.

Let PQR  be a triangle of area $\triangle$ with a=2,b=$\frac{7}{2}$ and c=$\frac{5}{2}$ where a,b and c  the length of the sides of the triangle opposite to the angle s  at P, Q and R respectively.Then $\frac{2 \sin P-\sin 2P}{2 \sin P+\sin 2P}$ equal to 


A) $\frac{3}{4 \triangle}$

B) $ \frac{45}{4 \triangle}$

C) $(\frac{3}{4 \triangle})^{2}$

D) $( \frac{45}{4 \triangle})^{2}$



19.

lf a and b are vectors such that |a+b|=$\sqrt{29}$ and $a \times (2 i+3j+4k)=(2i+3j+4k) \times b$ the  a possible value of $(a+b).(-7 i+2j+3k)$ is 


A) 0

B) 3

C) 4

D) 5



20.

The equation of a plane passing through the line of intersection of the plane x+2y+3z=2 and x-y+z=3 and at a distance $2/\sqrt{3}$ from the point (3,1m-1) is 


A) 5x-11y+z=17

B) $\sqrt{2}x+y=3\sqrt{2}-1$

C) $x+y+z=\sqrt{3}$

D) $x-\sqrt{2} y=1- \sqrt{3}$



<<12345>>