Answer:
Option C
Explanation:
Concept involved Integration by Substitution
i.e, I=∫f(g(x)).g′(x)dx
put , g(x)=t ⇒ g'(x)dx=dt$
∴ l=∫f(t)dt
Description of Situation Generally,
students gets confused after substitution i.e.,
secx+tanx=t
Now, for sec x we should use
sec2x−tan2x=1
⇒ (secx−tanx)(secx+tanx)=1
⇒ secx−tanx=1t
sol. Here, ∫sec2x(secx+tanx)9/2dx
Put, secx+tanx=t
⇒ (secxtanx+sec2x)dx=dt
⇒ secx.tdx=dt
⇒ secxdx=dtt
∴ secx−tanx=1t
⇒ secx=12(t+1t)
∴ l=∫secx.secxdx(secx+tanx)9/2
⇒ l=∫12(t+1t).dttt9/2
=12∫(1t9/2+1t13/2)dt
=−12{27t7/2+211t11/2}+K
=−[17(secx+tanx)1/2+111(secx+tanx)11/2]+K
=−1(secx+tanx)11/2
{111+17(secx+tanx)2}+K