Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The integral  sec2x(secx+tanx)9/2dx equals to (for some arbitrary constant K)


A) 1(secx+tanx)11/2{11117(secx+tanx)2}+K

B) 1(secx+tanx)11/2{11117(secx+tanx)2}+K

C) 1(secx+tanx)11/2{111+17(secx+tanx)2}+K

D) 1(secx+tanx)11/2{111+17(secx+tanx)2}+K

Answer:

Option C

Explanation:

Concept involved Integration by Substitution

i.e,    I=f(g(x)).g(x)dx

 put    , g(x)=t g'(x)dx=dt$

   l=f(t)dt

 Description of Situation Generally,

students gets confused after substitution i.e.,

 secx+tanx=t

 Now, for sec x  we should use

 sec2xtan2x=1

    (secxtanx)(secx+tanx)=1

   secxtanx=1t

 sol. Here, sec2x(secx+tanx)9/2dx

 Put,                           secx+tanx=t

   (secxtanx+sec2x)dx=dt

   secx.tdx=dt

   secxdx=dtt

   secxtanx=1t

   secx=12(t+1t)

    l=secx.secxdx(secx+tanx)9/2

    l=12(t+1t).dttt9/2

=12(1t9/2+1t13/2)dt

 =12{27t7/2+211t11/2}+K

 =[17(secx+tanx)1/2+111(secx+tanx)11/2]+K

=1(secx+tanx)11/2

       {111+17(secx+tanx)2}+K