Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let  f(x)={x2|cosπx,x00,x=0 then f is 


A) differentiable both at x = 0 and at x=2

B) differentiable at x=0 but not differentiable at x=2

C) not differentiable at x=0 but differentiable at x=2

D) differentiable neither at x=0 nor at x=2

Answer:

Option B

Explanation:

Concept Involved To check differentiability at a point we use RHD and LHD at a point and if RHD = LHD, then f(x) is differentiable at the point.

 Description of Situation

 As,   R

{f(x)}=limh0f(x+h)f(x)h

and   L{f(x)}=limh0f(xh)f(x)h

 Here, students generaliy gets confused in defining modulus

 Sol. To check differentiable at x=0

  R{f(0)}=limh0f(0+h)f(0)h

=limh0h2|cosπh|0h

=limh0h.|cosπh|=0

 L{f(0)}=limh0f(0h)f(0)h

=\lim_{h \rightarrow 0}\frac{h^{2}|\cos \left(-\frac{\pi}{h}\right)|-0}{-h}}

         =0

 so, f(x) is differentiable  at x=0

To check differentiability at x=2

R{f(2)}=limh0f(2+h)f(2)h

   =limh0(2+h)2|cos(π2+h)|0h

=limh0(2+h)2sin(π2π2+h)h

=limh0(2+h)2sin(πh2(2+h))h.π2(2+h)

                                         .π2(2+h)

   R(f(2))=π

  L(f(2))=limh0f(2h)f(2)h

  =limh0(2h)2.|cosπ2h|22.|cosπ2|h

=limh0(2h)2(cosπ2h)0h

=limh0(2h)2.sin(π2π2h)h

limh0(2h)2.sin(πh2(2h))h×π2(2h)   

                                             ×π2(2h)

     L.F(2))=π

 Thus,  f(x) is differentiable  at x=0 but not at x=2