1)

Let  $f(x)=\begin{cases}x^{2}|\cos \frac{\pi}{x}, & x \neq 0\\0 ,& x = 0\end{cases}$ then f is 


A) differentiable both at x = 0 and at x=2

B) differentiable at x=0 but not differentiable at x=2

C) not differentiable at x=0 but differentiable at x=2

D) differentiable neither at x=0 nor at x=2

Answer:

Option B

Explanation:

Concept Involved To check differentiability at a point we use RHD and LHD at a point and if RHD = LHD, then f(x) is differentiable at the point.

 Description of Situation

 As,   R

$\left\{f'(x)\right\}=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}$

and   $L\left\{f'(x)\right\}=\lim_{h \rightarrow 0}\frac{f(x-h)-f(x)}{-h}$

 Here, students generaliy gets confused in defining modulus

 Sol. To check differentiable at x=0

  $R\left\{f'(0)\right\}=\lim_{h \rightarrow 0}\frac{f(0+h)-f(0)}{h}$

$=\lim_{h \rightarrow 0}\frac{h^{2}|\cos \frac{\pi}{h}|-0}{h}$

$=\lim_{h \rightarrow 0}h.|\cos \frac{\pi}{h}|=0$

 $L\left\{f'(0)\right\}=\lim_{h \rightarrow 0}\frac{f(0-h)-f(0)}{-h}$

$=\lim_{h \rightarrow 0}\frac{h^{2}|\cos \left(-\frac{\pi}{h}\right)|-0}{-h}}$

         =0

 so, f(x) is differentiable  at x=0

To check differentiability at x=2

$R\left\{f'(2)\right\}=\lim_{h \rightarrow 0}\frac{f(2+h)-f(2)}{h}$

   $=\lim_{h \rightarrow 0}\frac{(2+h)^{2}| \cos \left(\frac{\pi}{2+h}\right)|-0}{h}$

$=\lim_{h \rightarrow 0}\frac{(2+h)^{2} \sin  \left(\frac{\pi}{2}-\frac{\pi}{2+h}\right)}{h}$

$=\lim_{h \rightarrow 0}\frac{(2+h)^{2} \sin  \left(\frac{\pi h}{2(2+h)}\right)}{h.\frac{\pi}{2(2+h)}}$

                                         .$\frac{\pi}{2(2+h)}$

$\Rightarrow$   $R(f'(2))=\pi$

  $L(f'(2))=\lim_{h \rightarrow 0}\frac{f(2-h)-f(2)}{-h}$

  =$\lim_{h \rightarrow 0}\frac{(2-h)^{2}.|\cos \frac{\pi}{2-h}|-2^{2}.|\cos \frac{\pi}{2}|}{-h}$

=$\lim_{h \rightarrow 0}\frac{(2-h)^{2}-\left(-\cos \frac{\pi}{2-h}\right)-0}{-h}$

=$\lim_{h \rightarrow 0}\frac{-(2-h)^{2}.\sin\left( \frac{\pi}{2}-\frac{\pi}{2-h}\right)}{h}$

$\lim_{h \rightarrow 0}\frac{(2-h)^{2}.\sin\left( -\frac{\pi h}{2(2-h)}\right)}{h \times \frac{-\pi}{2(2-h)}}$   

                                             $\times \frac{-\pi}{2(2-h)}$

 $\Rightarrow$    $L.F'(2))=-\pi$

 Thus,  f(x) is differentiable  at x=0 but not at x=2