1)

The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is


A) 75

B) 150

C) 210

D) 243

Answer:

Option B

Explanation:

The concept involved the Distribution of objects into groups. Here, the student should be particular about objects and groups. i.e.,

Objects                Groups

Distinct                Distinct

Identical              Identical

Distinct               Identical

Identical              Distinct

Description of Situation Here, 5 distinct balls are distributed amongst 3 persons so that each gets at least one ball.

i.e, Distinct $\rightarrow$ Distinct

so, we should make cases

 Case  I            A B C

                       1 1 3

Case II             A B C

                        1 2 2

 sol. number of ways to distribute 5 balls is

$\left(^{5}C_{1}.^{4}C_{3}.^{3}C_{3} \times \frac{3!}{2!}\right)+\left(^{5}C_{1}.^{4}C_{2}.^{2}C_{2} \times \frac{3!}{2!}\right)$

  =60+90

   =150