1)

The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4)  with the plane 5x-4y-z=1.

If S is the foot of the 4. perpendicular drawn from the point T(2,1,4) to QR , then the length of the line segment PS is 


A) $\frac{1}{\sqrt{2}}$

B) $\sqrt{2}$

C) 2

D) $2 \sqrt{2}$

Answer:

Option A

Explanation:

Concept Involved

 It is based on two concepts one is the intersection of straight line
and plane and other is the foot of the perpendicular from a point to the straight
line.

 Description of situation

 (i) if the straight line

   $\frac{x-x_{1}}{a}-\frac{y-y_{1}}{b}$

                 =$\frac{z-z_{1}}{c}=\lambda$

 22112021356_d1.PNG

 intersect the plane  Ax+By+Cz+d=0

 Then , $(a \lambda+x_{1},b \lambda+y_{1},c \lambda+z_{1})$ would satisfy

  Ax+By+Cz+d=0

22112021621_d2.PNG

 (ii) If A is the foot of perpendicular from P  to l.

 Then, (dr's of PA) is perpendicular to dr's of l.

$\Rightarrow$ $\overline{PA}.l=0$

Sol. Equation of straight line QR, is 

 $\frac{x-2}{1-2}=\frac{y-3}{-1-3}=\frac{z-5}{4-5}$

 or    $\frac{x-2}{-1}=\frac{y-3}{-4}=\frac{z-5}{-1}$

or $\frac{x-2}{1}=\frac{y-3}{4}=\frac{z-5}{1}=\lambda$

 or $\frac{x-2}{1}=\frac{y-3}{4}=\frac{z-5}{1}=\lambda$ ..........(i)

 $\therefore$   $P(\lambda+2,4\lambda+3,\lambda+5)$ must lie on 5x-4y-z=1

 $\Rightarrow$  $5(\lambda+2)-4(4\lambda+3)-(\lambda+5)=1$

$\Rightarrow$  $5 \lambda+10-16 \lambda-12-\lambda-5=1$

 $\Rightarrow$  $-7-12\lambda=1$

$\lambda=\frac{-2}{3}$ or $P\left(\frac{4}{3},\frac{1}{3},\frac{13}{3}\right)$.......(ii)

Again we assume S from (i) as $S(\mu +2,4\mu + 3, \mu + 5)$

dr's of TS = $(\mu+2-2, 4\mu + 3-1, \mu + 5-4 )$

$(\mu, 4\mu+2, \mu + 1)$

and dr's of QR =(1,4,1)

 since, perpendicular 

$\because$   $1(\mu)+4(4 \mu+2)+1(\mu+1)=0$

 $\Rightarrow$  $\mu=-\frac{1}{2}$ and $S(\frac{3}{2},1,\frac{9}{2})$...(iii)

 $\therefore$  Length of 

 PS= $\sqrt{\left(\frac{3}{2}-\frac{4}{3}\right)^{2}+\left(1-\frac{1}{3}\right)^{2}+\left(\frac{9}{2}-\frac{13}{3}\right)^{2}}$

   $=\frac{1}{\sqrt{2}}$