Answer:
Option D
Explanation:
Concept involved if $ax^{2}+bx+c=0$ has roots $\alpha, \beta$ , then
$\alpha, \beta=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
for roots to be real $b^{2}-4ac \geq 0$
Description of Situation As imaginary
part of z=x+iy is non zero
$\Rightarrow$ $y \neq 0$
sol. 1 method let z=x+iy
$\therefore$ $a=(x+iy)^{2}+(x+iy)+1$
$\Rightarrow$ $(x^{2}-y^{2}+x+1-a)+i(2xy+y)=0$
$\Rightarrow$ $(x^{2}-y^{2}+x+1-a)+iy(2x+1)=0$......(i)
It is purely real .If ,y(2x+1)=0
but imagonary part of z, i.em y is non zero
$\Rightarrow$ 2x+1=0 or x= $-\frac{1}{2}$
$\therefore$ From Eq.(i) $\frac{1}{4}-y^{2}-\frac{1}{2}+1-a=0$
$\Rightarrow$ $a=-y^{2}+\frac{3}{4} \Rightarrow a <\frac{3}{4}$
II method Here, $z^{2}+z+(1-a)=0$
$\therefore$ $z=\frac{-1\pm\sqrt{1-4(1-a)}}{2\times1}$
$\Rightarrow$ $z=\frac{-1\pm\sqrt{4a-3}}{2}$
for z do not have real roots.
4a-3<0 $\Rightarrow$ a < $\frac{3}{4}$