<<56789>>
36.

Let M and N be two 3x3 non-singular skew-symmetric matrices such that MN = NM. If PT denotes the transpose of P, then  $M^{2}N^{2}(M^{T}N)^{-1}(MN^{-1})^{T}$ is  equal to 


A) $M^{2}$

B) $-N^{2}$

C) $-M^{2}$

D) MN



37.

Let $\alpha$ and $\beta$  be the roots of $x^{2}-6x-2=0$ with $\alpha > \beta$ , if $a_{n}=\alpha^{n}-\beta^{n}$ for $\geq$1, then the value of $ \frac{ a_{10}-2a_{8}}{2a_{9}}$ is 


A) 1

B) 2

C) 3

D) 4



38.

Let  $P=( \theta: \sin \theta -\cos \theta= \sqrt{2} \cos \theta)$ and  $Q=({ \theta :\sin \theta+\cos \theta= \sqrt{2} \sin \theta })$ be two  sets,  Then, 


A) $P\subset Q $ and $Q-P\neq \phi$

B) $Q\neq\subset P$

C) $P\neq\subset Q$

D) P=Q



39.

 Let ($x_{0},y_{0})$ be the solution of the following equations  $(2x)^{\log 2}=(3y)^{\log 3}$  $3^{\log x}=2 ^{\log y}$, then $x_{0}$ is equal to 


A) $\frac{1}{6}$

B) $\frac{1}{2}$

C) $\frac{1}{2}$

D) 6



40.

The value  of $\int_{\sqrt{\log 2}}^{\sqrt{\log 3}} \frac{x \sin x^{2}}{\sin x^{2}+ \sin (\log 6-x^{2})}dx$ is 


A) $\frac{1}{4} \log \frac{3}{2}$

B) $\frac{1}{2} \log \frac{3}{2}$

C) $\log \frac{3}{2}$

D) $\frac{1}{6} \log \frac{3}{2}$



<<56789>>