Answer:
Option C
Explanation:
Taking log on both sides
$\log 2.\log(2x)= \log 3(\log 3y)$
$\Rightarrow$ $\log 2(\log 2+\log x)$
= $\log 3(\log 3+\log y)$....(i)
and $\log x.\log 3= \log y \log 2$
$\log y= \frac{ \log x. \log 3}{ \log 2}$...(ii)
from Eq.(i) and (ii) we get
$\log 2( \log 2+\log x)= $
$\log 3.\left\{ \log 3+\frac{\log x.\log 3}{\log 2}\right\}$
$\Rightarrow$ $(\log 2)^{2}+\log 2.\log x=$
$(\log 3)^{2}+\frac{ (\log 3)^{2}}{ (\log 2)}. \log x$
$\Rightarrow$ $ \log x.\left\{\frac{(\log 3)^{2}}{\log 2}-\log 2\right\}= (\log 2)^{2}-(\log 3)^{2}$
$\Rightarrow$ $\log x.\left\{\frac{(\log 3)^{2}-(\log 2)^{2}}{\log 2}\right\}= (\log 2)^{2}-(\log 3)^{2}$
$\Rightarrow$ $\log x=-\log 2= \log 2^{-1}$
$\therefore$ $x= \frac{1}{2}$