Answer:
Option B,D
Explanation:
Here , equation of ellipse
$\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
$\Rightarrow$ $e^{2}=1-\frac{b^{2}}{a^{2}}=1-\frac{1}{4}=\frac{3}{4}$
$\therefore$ $e= \frac{\sqrt{3}}{2}$ and focus $(\pm ae,0)$
$= ( \pm \sqrt{3},0)$
For hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$e_{1}^{2}=1+\frac{b^{2}}{a^{2}}$ where, $e_{1}^{2}=\frac{1}{e^{2}}=\frac{4}{3}$
$\Rightarrow$ $1+ \frac{b^{2}}{a^{2}}=\frac{4}{3} \Rightarrow \frac{b^{2}}{a^{2}}=\frac{1}{3}$....(i)
and hyperbola passes through $(\pm \sqrt{3},0)$
Now, $\frac{3}{a^{2}}=1 \Rightarrow a^{2}=3$ ....(ii)
from eqs. (i) and (ii) , we get
$b^{2}=1$ ......(iiii)
$\therefore$ Equation of hyperbola is
$\frac{x^{2}}{3}-\frac{y^{2}}{1}=1$
Focus is $(\pm ae,0)$
Now, $\left(\pm \sqrt{3}.\frac{2}{\sqrt{3}},0\right) \Rightarrow (\pm2,0)$
hence , both options (b) and (d) are correct