Answer:
Option D
Explanation:
$P=( \theta: \sin \theta-\cos \theta= \sqrt{2} \cos \theta)$
$\Rightarrow$ $\cos \theta ( \sqrt{2}+1)= \sin \theta$
$\Rightarrow$ $\tan \theta = \sqrt{2}+1$ ...(i)
$Q=( \theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta)$
$\Rightarrow$ $\sin \theta(\sqrt{2}-1)=\cos \theta$
$\Rightarrow$ $\tan \theta= \frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$
$= (\sqrt{2}+1)$....(ii)
$\therefore$ P=Q