Answer:
Option C
Explanation:
Given $M^{T}=-M,N^{T}=-N$
and MN=NM
$\therefore$ $M^{2}N^{2}(M^{T}N)^{-1}(MN^{-1})^{T}$
$= M^{2}N^{2}N^{-1}(M^{T})^{-1}(N{-1})^{T}.M^{T}$
=$M^{2}N(NN^{-1})(-M)^{-1}(N^{T})^{-1}(-M)$
=$M^{2}NI(-M^{-1})(-N)^{-1}(-M)$
=$-M.(MN)M^{-1}N^{-1}M$
=$-MN(NM^{-1})N^{-1}M$
=$-M(NN^{-1})M=-M^{2}$
Note Here, non-singular word should not be used, since there is no non-singular 3 x 3 skew-symmetric matrix