<<56789
41.

A straight line L through the point (3, - 2) is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ . If L also intersects the X-axis, there the equation of L is


A) $y+ \sqrt{3} x+2-3\sqrt{3}=0$

B) $y- \sqrt{3} x+2+3\sqrt{3}=0$

C) $ \sqrt{3} y-x+3+2\sqrt{3}=0$

D) $ \sqrt{3} y+x-3+2\sqrt{3}=0$



42.

Let the straight line x = b divide the area enclosed by   $y=(1-x)^{2},y=0 $ and x=0 into two parts $R_{1}(0\leq x\leq b) $and $R_{2}(b\leq x \leq1)$   such that $R_{1}-R_{2}=\frac{1}{4}$


A) $\frac{3}{4}$

B) $\frac{1}{2}$

C) $\frac{1}{3}$

D) $\frac{1}{4}$



43.

Let  $a= \widehat{i}+\widehat{j}+\widehat{k},b=\widehat{i}-\widehat{j}+\widehat{k}$ ans $c=\widehat{i}-\widehat{j}-\widehat{k}$ be three vectors. A vector v in the plane of a and b whose projection  of c is $\frac{1}{\sqrt{3}}$ is given by 


A) $\widehat{i}-3\widehat{j}+3\widehat{k}$

B) $-3\widehat{i}-3\widehat{j}-\widehat{k}$

C) $3\widehat{i}-\widehat{j}+3\widehat{k}$

D) $\widehat{i}+3\widehat{j}-3\widehat{k}$



<<56789