Answer:
Option A
Explanation:
put x2=t⇒xdx=dt2
∴ I=∫log3log2sintdt2sint+sin(log6−t) ...(i)
Using ∫baf(x)dx=∫baf(a+b−x)dx
I=12∫log2log3sin(log2+log3−t)sin(log2+log3−t)+sin(log6−(log2+log3−t))dt
I=12∫log3log2sin(log6−t)sin(log6−t)+sin(t)dt
∴ I=12∫log3log2sin(log6−t)sin(log6−t)+sin(t)dt......(i)
On adding Eqs.(i) and (ii) we get
2l=I=12∫log3log2sint+sin(log6−t)sin(log6−t)+sin(t)dt
∴ 2I=12(t)log3log2=12(log3−log2)
⇒ I=14log(32)