1)

The value  of log3log2xsinx2sinx2+sin(log6x2)dx is 


A) 14log32

B) 12log32

C) log32

D) 16log32

Answer:

Option A

Explanation:

  put x2=txdx=dt2

  I=log3log2sintdt2sint+sin(log6t) ...(i)

 Using baf(x)dx=baf(a+bx)dx

I=12log2log3sin(log2+log3t)sin(log2+log3t)+sin(log6(log2+log3t))dt

 I=12log3log2sin(log6t)sin(log6t)+sin(t)dt

   I=12log3log2sin(log6t)sin(log6t)+sin(t)dt......(i)

On adding Eqs.(i) and (ii)  we get

 2l=I=12log3log2sint+sin(log6t)sin(log6t)+sin(t)dt

    2I=12(t)log3log2=12(log3log2)

    I=14log(32)