Answer:
Option A
Explanation:
put $x^{2}=t \Rightarrow x dx= \frac{dt}{2}$
$\therefore$ $I=\int_{\log 2}^{\log 3} \frac{ \sin t \frac{dt}{2}}{ \sin t+\sin ( log 6-t)}$ ...(i)
Using $\int_{a}^{b} f(x) dx= \int_{a}^{b} f(a+b-x)dx$
$I=\frac{1}{2}\int_{\log 3}^{\log 2} \frac{\sin(\log 2+\log 3-t)}{\sin( \log 2+\log 3-t)+\sin (\log 6-(\log 2+\log 3-t)) }dt$
$I=\frac{1}{2}\int_{\log 2}^{\log 3} \frac{\sin(\log 6-t)}{\sin( \log 6-t)+\sin (t)}dt$
$\therefore$ $I=\frac{1}{2}\int_{\log 2}^{\log 3} \frac{\sin(\log 6-t)}{\sin( \log 6-t)+\sin (t)}dt$......(i)
On adding Eqs.(i) and (ii) we get
$2l=I=\frac{1}{2}\int_{\log 2}^{\log 3} \frac{\sin t+ \sin(log 6-t)}{\sin( \log 6-t)+\sin (t)}dt$
$\therefore$ $2I=\frac{1}{2}(t)_{\log2}^{\log 3}= \frac{1}{2} (\log 3-\log 2)$
$\Rightarrow$ $I= \frac{1}{4} \log (\frac{3}{2})$