Answer:
Option C
Explanation:
Taking log on both sides
log2.log(2x)=log3(log3y)
⇒ log2(log2+logx)
= log3(log3+logy)....(i)
and logx.log3=logylog2
logy=logx.log3log2...(ii)
from Eq.(i) and (ii) we get
log2(log2+logx)=
log3.{log3+logx.log3log2}
⇒ (log2)2+log2.logx=
(log3)2+(log3)2(log2).logx
⇒ logx.{(log3)2log2−log2}=(log2)2−(log3)2
⇒ logx.{(log3)2−(log2)2log2}=(log2)2−(log3)2
⇒ logx=−log2=log2−1
∴ x=12