1)

 Let (x0,y0) be the solution of the following equations  (2x)log2=(3y)log3  3logx=2logy, then x0 is equal to 


A) 16

B) 12

C) 12

D) 6

Answer:

Option C

Explanation:

Taking log on both  sides

 log2.log(2x)=log3(log3y)

   log2(log2+logx)

= log3(log3+logy)....(i)

and logx.log3=logylog2

logy=logx.log3log2...(ii)

 from Eq.(i) and (ii) we get

 log2(log2+logx)=

                      log3.{log3+logx.log3log2}

   (log2)2+log2.logx=

 (log3)2+(log3)2(log2).logx

  logx.{(log3)2log2log2}=(log2)2(log3)2

   logx.{(log3)2(log2)2log2}=(log2)2(log3)2

   logx=log2=log21

  x=12