Answer:
Option C
Explanation:
$\frac{a_{10}-2a_{8}}{2a_{9}}=\frac{(\alpha^{10}-\beta^{10})-2(\alpha^{8}-\beta^{8})}{2(\alpha^{9}-\beta^{9})}$
=$\frac{\alpha^{8}(\alpha^{2}-2)-\beta^{8}(\beta^{2}-2)}{2(\alpha^{9}-\beta^{9})}$
[ $\therefore$ is root of $x^{2}-6x-2=0$
$\alpha^{2}-2=6\alpha]$
Also,$\beta$ is the root of $x^{2}-6x-2=0$
$\rightarrow$ $\beta^{2}-2=6 \beta$
$= \frac{\alpha^{8}(6\alpha)-\beta^{8}(6\beta)}{2(\alpha^{9}-\beta^{9})}=\frac{6(\alpha^{9}-\beta^{9})}{2(\alpha^{9}-\beta^{9})}=3$