Answer:
Option B
Explanation:
Given ,$[a b c]_{1 \times 3}$ $\begin{bmatrix}1 & 9 &7 \\8 & 2&7 \\7&3&7 \end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$
$\Rightarrow$ $\begin{bmatrix}a+8b+7c \\9a+2b+3c \\7a+7b+7c\end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$
$\Rightarrow$ a+8b+7c=0....(i)
$\Rightarrow$ 9a+2b+3c=0 .....(ii)
$\Rightarrow$ a+b+c=0 .....(iii)
On multiplying Eq.(iii) bt=y 2 , then substract from Eq.(ii) we get
7a+c=0...(iv)
Again multiplying Eq,(iii) by 3 , then substract from Eq.(ii) , we get
6a-b=0....(v)
$\therefore$ b=6a and c=-7a
if b=6 , a=1 and c=-7
$\therefore$ $ax^{2}+bx+c=0$
$\Rightarrow$ $x^{2}+6x-7=0$
$\Rightarrow$ $(x+7)(x-1)=0$
$\therefore$ x=1,-7
$\Rightarrow$ $\sum_{n=0}^{\infty}\left(\frac{1}{1}-\frac{1}{7}\right)^{n}\Rightarrow \sum_{n=0}^{\infty}\left(\frac{6}{7}\right)^{n}$
$\Rightarrow$ $1+\frac{6}{7}+(\frac{6}{7})^{n}+....\infty$
= $\frac{1}{1-\frac{6}{7}}= \frac{1}{1/7}=7$