<<345678>>
26.

 Let $a_{1},a_{2},a_{3}.......,a_{100}$ be an arithmetic progression with  $a_{1}=3$  and 

$S_{p}=\sum_{i=1}^pa_{i}, 1\leq p\leq100$ for any integer n with $1\leq n\leq 20$ , let m=5n, If $\frac{S_{m}}{S_{n}}$ does not depend  on n, then $a_{2}$ is 


A) 3

B) 9

C) 4

D) 5



27.

The positive integer value of n > 3 satisfying the equation

$\frac{1}{\sin\left(\frac{\pi}{n}\right)}=\frac{1}{\sin\left(\frac{2\pi}{n}\right)}+\frac{1}{\sin\left(\frac{3\pi}{n}\right)}$ is 


A) 5

B) 4

C) 7

D) 3



28.

Let a, b and c be three real numbers satisfying [a b c] $\begin{bmatrix}1 & 9 &7 \\8 & 2&7 \\7&3&7 \end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$

Let b=6, with  a and c satisfying Eq. (E). If $\alpha$ and $\beta$ are the roots of the quadratic  equation  $ax^{2}+bx+c=0$ 

 then  $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is 


A) 6

B) 7

C) $\frac{6}{7}$

D) $\infty$



29.

Let a, b and c be three real numbers satisfying [a b c]$ \begin{bmatrix}1 & 9 &7 \\8 & 2&7 \\7&3&7 \end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$

 Let $\omega$  be a solution of   $x^{3}-1=0$  with  Im $(\omega$) >0.If a=2  with b and c satisfying Eq (E). then the value of $\frac{3}{\omega^{\alpha}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$


A) -2

B) 2

C) 3

D) -3



30.

Let a, b and c be three real numbers satisfying [a b c]  $ \begin{bmatrix}1 & 9 &7 \\8 & 2&7 \\7&3&7 \end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$

If the point P(a, b, c), with reference to Eq. (E), lies on the plane 2x + y +z = 1, then the value of 7 a + b + c is


A) 0

B) 12

C) 7

D) 6



<<345678>>