12345>>
1.

Match the statements given in Column I with the intervals/union of intervals given in Column II

1312202151_m2.PNG


A) (A) $\rightarrow$ (s, (B) $\rightarrow$ (t,(C) $\rightarrow$ (r),(D) $\rightarrow$ (t)

B) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (s),(D) $\rightarrow$ (s)

C) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (r),(D) $\rightarrow$ (s)

D) (A) $\rightarrow$ (t), (B) $\rightarrow$ (s),(C) $\rightarrow$ (s),(D) $\rightarrow$ (r)



2.

Match the statements given in Column I with the values given in column II

13122021305_m1.PNG


A) $(A) \rightarrow q ;(B) \rightarrow p ;(C) \rightarrow s, ;(D) \rightarrow s$

B) $(A) \rightarrow q ;(B) \rightarrow p ;(C) \rightarrow s, ;(D) \rightarrow q$

C) $(A) \rightarrow q ;(B) \rightarrow p ;(C) \rightarrow q, ;(D) \rightarrow s$

D) $(A) \rightarrow q ;(B) \rightarrow p ;(C) \rightarrow p, ;(D) \rightarrow s$



3.

The straight line 2x - 3y = 1 divides the circular region $x^{2}+y^{2}\leq 6$ into two  parts  .If  $S=\left\{\left(2,\frac{3}{4}\right),\left(\frac{5}{2},\frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right),\left(\frac{1}{8},\frac{1}{4}\right)\right\}$, then the  number of point(s) in S lying inside the smaller part is 


A) 4

B) 2

C) 5

D) 3



4.

The number of distinct real roots of $x^{4}-4x^{3}+12x^{2}+x-1=0$


A) 4

B) 3

C) 2

D) 1



5.

Let M be a 3 x3 matrix satisfying

$M\begin{bmatrix}0  \\1 \\0 \end{bmatrix}=\begin{bmatrix}-1  \\2 \\3 \end{bmatrix},M\begin{bmatrix}1  \\-1\\0 \end{bmatrix}=\begin{bmatrix}1  \\1 \\-1 \end{bmatrix}$  and  $M\begin{bmatrix}1  \\1 \\1 \end{bmatrix}=\begin{bmatrix}0  \\0 \\12 \end{bmatrix}$

Then, the sum  of the diagonal entries of M is


A) 4

B) 6

C) 5

D) 9



12345>>