Answer:
Option B
Explanation:
Now , probability of the drawn ball from $U_{2}$ being white is
$\Rightarrow$ P( white /U2)
= $P(H).\left\{\frac{^{3}C_{1}}{^{5}C_{1}}\times\frac{^{2}C_{1}}{^{2}C_{1}}+\frac{^{2}C_{1}}{^{5}C_{1}}\times\frac{^{1}C_{1}}{^{2}C_{1} }\right\}$ $+ P(T)\left\{\frac{^{3}C_{1}}{^{5}C_{1}}\times\frac{^{3}C_{2}}{^{3}C_{2}}+\frac{^{2}C_{2}}{^{5}C_{2}}\times\frac{^{1}C_{1}}{^{3}C_{2}}$
$+\frac{^{3}C_{1}.^{2}C_{1}}{^{5}C_{2}}\times\frac{^{2}C_{1}}{^{3}C_{2}}\right\}$
Now ,P(white/U2)=$\frac{1}{2}\left\{\frac{3}{5}\times1+\frac{2}{5}\times\frac{1}{2}\right\}$
$+\frac{1}{2}\left\{\frac{3}{10}\times1+\frac{1}{10}\times\frac{1}{3}+\frac{6}{10}\times\frac{2}{3}\right\}=\frac{23}{30}$