Answer:
Option A,D
Explanation:
Let $a= \widehat{i}+\widehat{j}+2\widehat{k},b=\widehat{i}+2\widehat{j}+\widehat{k}$ and
$c= \widehat{i}+\widehat{j}+\widehat{k}$
$\therefore$ Avector coplanar to a and b and perpendicular to c
Now $\lambda ( a \times b) \times c$
$\Rightarrow$ $\lambda {(a.c)b-(b.c)a}$
$\Rightarrow$ $\lambda {(1+1+4)(\widehat{i}+2 \widehat{j}+\widehat{k})}$
${-(1+2+1)(\widehat{i}+\widehat{j}+2 \widehat{k}})$
$\Rightarrow$ $\lambda (6 \widehat{i}+12 \widehat{j}+6 \widehat{k}-6\widehat{i}-6\widehat{j}-12\widehat{k})$
$\Rightarrow$ $\lambda(6 \widehat{j}-6 \widehat{k}) \Rightarrow 6 \lambda (\widehat{j}-\widehat{k})$
for $\lambda=\frac{1}{6} \Rightarrow$ Option (a) is correct
for $\lambda=-\frac{1}{6} \Rightarrow$ Option (d) is correct