<<12345>>
16.

If $\lim_{x \rightarrow0}[1+x \log (1+b^{2})]^{1/x}=2 b\sin^{2} \theta  b>0$ and $\theta\epsilon (-\pi, \pi]$ , then the value of $\theta$ is 


A) $\pm \frac{\pi}{4}$

B) $\pm \frac{\pi}{3}$

C) $\pm \frac{\pi}{6}$

D) $\pm \frac{\pi}{2}$



17.

Let $f:[-1,2] \rightarrow [0, \infty]$ be a continuous function such that f(x) = f(1 - x) for all, $x\epsilon [-1,2]$. Let $R_{1}=\int_{-1}^{2} x f(x) dx$ and $R_{2}$  be the area of the region bounded by y = f(x),x = - 1, x = 2and the X-axis. Then


A) $R_{1}=2R_{2}$

B) $R_{1}=3R_{2}$

C) $2R_{1}=R_{2}$

D) $3R_{1}=R_{2}$



18.

Let f(x)= x2 and g(x)= $\sin x $ for all x $\epsilon$ R. Then, the set of all x satisfying (fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x))is


A) $\pm \sqrt{n \pi},n\epsilon\left\{0,1,2....\right\}$

B) $\pm \sqrt{n \pi},n\epsilon\left\{1,2....\right\}$

C) $\frac{\pi}{2}+2 n\pi ,n\epsilon\left\{.....-2,-1,0,1,2....\right\}$

D) $2 n\pi ,n\epsilon\left\{.....-2,-1,0,1,2....\right\}$



19.

Let(x, y)be any point on the parabola $y^{2}=4x$. Let P be the point that divides the line segment from (0, 0)to (x, y) in the ratio 1 : 3. Then, the locus of P is


A) $x^{2}=y$

B) $y^{2}=2x$

C) $y^{2}=x$

D) $x^{2}=2y$



20.

Let P(6, 3) be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at the point P intersects the X-axis at (9, 0), then the eccentricity of the hyperbola is


A) $\sqrt{\frac{5}{2}}$

B) $\sqrt{\frac{3}{2}}$

C) $\sqrt{2}$

D) $\sqrt{3}$



<<12345>>