Answer:
Option B
Explanation:
$f(x)=x^{2},g(x)= \sin x$
$(g o f)(x)= \sin x^{2}$
$g o(gof)(x)=\sin(\sin x^{2})$
$(f ogogof)(x)=(\sin(\sin x^{2}))^{2}$.......(i)
Again , $(gof)(x)=\sin x^{2}$
$(gogof)(x)=\sin (\sin x^{2})$.....(ii)
Given, $(fogogof)(x)=(gogof)(x)$
$\Rightarrow$ $(\sin (\sin x^{2}))^{2}= \sin (\sin x^{2})$
$\Rightarrow$ $\sin (\sin x^{2}) ( \sin (\sin x^{2})-1)=0$
$\Rightarrow$ $\sin (\sin x^{2})=0 $ or $\sin (\sin x^{2})=1$
$\Rightarrow$ $\sin x^{2}=0$ or $\sin x^{2}=\frac{\pi}{2}$
$\therefore$ $x^{2}=n \pi$
(i.e, not possible as $ -1 \leq \sin \theta \leq1)$
$ x=\pm \sqrt{n \pi}$