Processing math: 29%


1)

Let f:RR be a function such that f(x + y)= f(x) + f(y),x,yϵR. If f(x) is  differentiable at x = 0, then


A) f(x) is differentiable only in a finite interval containing zero

B) f(x)is continuous,xϵR

C) f'(x) is constant xϵR

D) f(x)is differentiable except at finitely many points

Answer:

Option B,C

Explanation:

 f(x+y)=f(x)+f(y) as f(x) is differentiable  at x=0

     f(0)=k ....(i)

 Now, f(x)=lim

=\lim_{h \rightarrow 0}\frac{f(x)+f(h)-f(x)}{h}

 =\lim_{h \rightarrow 0}\frac{f(h)}{h}    [ \frac{0}{0} from]

 Given ,f(x+y)=f(x)+f(y), \forall x,y

\therefore f(0)=f(0)+f(0)

when x=y=0 \Rightarrow f(0)=0

 Using L' Hosptial 's rule 

 \lim_{h\rightarrow 0}\frac{f'(h)}{1}=f'(0)=k .....(ii)

 \Rightarrow  f'(x)=k, on integrating  both sides

f(x)=kx+C, as f(0)=0 \Rightarrow C=0

 So, f(x)=kx

\therefore  f(x) is continuous for all x \epsilon R and 

 f'(x)=k, i.e constant  for all x \epsilon R

 hence , both (b) and (c) are correct.