Answer:
Option B,C
Explanation:
$f(x+y)=f(x)+f(y)$ as f(x) is differentiable at x=0
$\Rightarrow$ $f'(0)=k$ ....(i)
Now, $f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$=\lim_{h \rightarrow 0}\frac{f(x)+f(h)-f(x)}{h}$
=$\lim_{h \rightarrow 0}\frac{f(h)}{h}$ $[ \frac{0}{0}$ from]
Given ,$f(x+y)=f(x)+f(y), \forall x,y$
$\therefore$ $f(0)=f(0)+f(0)$
when $x=y=0 \Rightarrow f(0)=0$
Using L' Hosptial 's rule
$\lim_{h\rightarrow 0}\frac{f'(h)}{1}=f'(0)=k$ .....(ii)
$\Rightarrow$ $f'(x)=k, $on integrating both sides
$f(x)=kx+C, $ as f(0)=0 $\Rightarrow$ C=0
So, f(x)=kx
$\therefore$ f(x) is continuous for all $x \epsilon R$ and
$f'(x)=k$, i.e constant for all $x \epsilon R$
hence , both (b) and (c) are correct.