Answer:
Option B
Explanation:
Given ,[abc]1×3 [197827737]=[000]
⇒ [a+8b+7c9a+2b+3c7a+7b+7c]=[000]
⇒ a+8b+7c=0....(i)
⇒ 9a+2b+3c=0 .....(ii)
⇒ a+b+c=0 .....(iii)
On multiplying Eq.(iii) bt=y 2 , then substract from Eq.(ii) we get
7a+c=0...(iv)
Again multiplying Eq,(iii) by 3 , then substract from Eq.(ii) , we get
6a-b=0....(v)
∴ b=6a and c=-7a
if b=6 , a=1 and c=-7
∴ ax2+bx+c=0
⇒ x2+6x−7=0
⇒ (x+7)(x−1)=0
∴ x=1,-7
⇒ ∑∞n=0(11−17)n⇒∑∞n=0(67)n
⇒ 1+67+(67)n+....∞
= 11−67=11/7=7