Processing math: 100%


1)

Let a, b and c be three real numbers satisfying [a b c] [197827737]=[000]

Let b=6, with  a and c satisfying Eq. (E). If α and β are the roots of the quadratic  equation  ax2+bx+c=0 

 then  n=0(1α+1β)n is 


A) 6

B) 7

C) 67

D)

Answer:

Option B

Explanation:

 Given  ,[abc]1×3  [197827737]=[000]

  [a+8b+7c9a+2b+3c7a+7b+7c]=[000]

  a+8b+7c=0....(i)

  9a+2b+3c=0 .....(ii)

  a+b+c=0 .....(iii)

 On multiplying Eq.(iii) bt=y 2 , then substract from Eq.(ii) we get

 7a+c=0...(iv)

 Again multiplying Eq,(iii) by 3 , then substract from Eq.(ii) , we get

 6a-b=0....(v)

   b=6a and c=-7a

 if b=6 , a=1 and c=-7

  ax2+bx+c=0

     x2+6x7=0

  (x+7)(x1)=0

  x=1,-7

   n=0(1117)nn=0(67)n

     1+67+(67)n+....

 = 1167=11/7=7