<<12345>>
11.

Let L be a normal to the parabola y2 = 4x. lf L passes through the point (9, 6), then L is given by


A) y-x+3=0

B) y+3x-33=0

C) y+x-15=0

D) y-2x+12=0



12.

If $f(x)=\begin{cases}-x-\frac{\pi}{2}, & x \leq -\frac{\pi}{2}\\-\cos x,&-\frac{\pi}{2}< x \leq0 \\ x-1, & 0 <x \leq1\\\log x , & x>1\end{cases}$, then

 


A) f(x) is continuous at x= $-\frac{\pi}{2}$

B) f(x) is not differentiable at x=0

C) f(x) is differentiable at x=1

D) f(x) is differentiable at$ x=-\frac{3}{2}%$



13.

The value of  b for which the equations $x^{2}+bx-1=0,x^{2}+x+b=0$ have  one root in common  is 


A) $-\sqrt{2}$

B) $- i \sqrt{3}$

C) $- i \sqrt{5}$

D) $\sqrt{2}$



14.

Let $\omega  \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form  $\begin{bmatrix}1 & a&b \\\omega & 1&c\\\omega^{2}&\omega&1 \end{bmatrix}$, where each of a,b and c is either $\omega$ or $\omega^{2}$ . Then, the number of distinct matrices in the set S is


A) 2

B) 6

C) 4

D) 8



15.

The circle passing through the point (- 1, 0)and touching the Y-axis at (0 2), also passes through the point


A) $\left(-\frac{3}{2},0\right)$

B) $\left(-\frac{5}{2},0\right)$

C) $\left(-\frac{3}{2},\frac{5}{2}\right)$

D) $(-1,-4)$



<<12345>>