Answer:
Option D
Explanation:
Given ,$[a b c]_{1 \times 3}$ $\begin{bmatrix}1 & 9 &7 \\8 & 2&7 \\7&3&7 \end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$
$\Rightarrow$ $\begin{bmatrix}a+8b+7c \\9a+2b+3c \\7a+7b+7c\end{bmatrix}=\begin{bmatrix}0 & 0 &0 \end{bmatrix}$
$\Rightarrow$ a+8b+7c=0....(i)
$\Rightarrow$ 9a+2b+3c=0 .....(ii)
$\Rightarrow$ a+b+c=0 .....(iii)
On multiplying Eq.(iii) bt=y 2 , then substract from Eq.(ii) we get
7a+c=0...(iv)
Again multiplying Eq,(iii) by 3 , then substract from Eq.(ii) , we get
6a-b=0....(v)
$\therefore$ b=6a and c=-7a
As (a,b,c) lies on 2x+y+z=1
$\Rightarrow$ 2a+b+c=1
$\Rightarrow$ 2a+6a-7a=1
$\Rightarrow$ a=1,b=6 and c=-7
$\therefore$ 7a+b+c=7+6-7=6