Answer:
Option A,B
Explanation:
Given $a_{1}=3, m=5n$
and $a_{1},a_{2},....$ are in AP
$\therefore$ $\frac{S_{m}}{S_{n}}= \frac{ S_{5n}}{S_{n}}$ is independent of n
Now, $\frac{ \frac{5n}{2}[2 \times 3+(5n-1)d]}{\frac{n}{2}[2 \times 3+(n-1)d]}$
$\Rightarrow$ $\frac{f{(6-d)+5n}}{(6-d)+n}$
independent of n , if
$6-d=0 \Rightarrow d=6$
$\therefore$ $a_{2}=a_{1}+d=3+6=9$
if d=0
$\frac{S_{m}}{S_{n}}$ is independent of n
$\therefore$ $a_{2}=3$