1) Let a1,a2,a3.......,a100 be an arithmetic progression with a1=3 and Sp=∑pi=1ai,1≤p≤100 for any integer n with 1≤n≤20 , let m=5n, If SmSn does not depend on n, then a2 is A) 3 B) 9 C) 4 D) 5 Answer: Option A,BExplanation:Given a1=3,m=5n and a1,a2,.... are in AP ∴ SmSn=S5nSn is independent of n Now, 5n2[2×3+(5n−1)d]n2[2×3+(n−1)d] ⇒ f(6−d)+5n(6−d)+n independent of n , if 6−d=0⇒d=6 ∴ a2=a1+d=3+6=9 if d=0 SmSn is independent of n ∴ a2=3