<<1234>>
6.

The function $f:R\rightarrow [-\frac{1}{2},\frac{1}{2}]$ defined as  $f(x)=\frac{x}{1+x^{2}} is$


A) invertible

B) injective but not surjective

C) surjective but not injective

D) neither injective nor surjective



7.

If a hyperbola passes through the point $P(\sqrt{2},\sqrt{3})$ and has foci at (± 2,0), then the tangent to this hyperbola at P also passes through the point


A) $(3\sqrt{2},2\sqrt{3})$

B) $(2\sqrt{2},3\sqrt{3})$

C) $(-\sqrt{3},\sqrt{2})$

D) $(-\sqrt{2},-\sqrt{3})$



8.

The eccentricity of an ellipse whose centre is at the orgin is 1/2 . If one of its directrices is x=-4, then the equation of the normal to it at (1, $\frac{3}{2}$) is 


A) 2y-x=2

B) 4x-2y=1

C) 4x+2y=7

D) x+2y=4



9.

Let  $I_{n}=\int_{}^{} tan^{n}x dx (n>1), If $   $I_{4}+I_{6}=a\tan^{5}x+bx^{5}+C,$   , where C is a constant of integration, then  orderd pair (a,b) is equal to


A) $(-\frac{1}{5},1)$

B) $(\frac{1}{5},0)$

C) $(\frac{1}{5},-1)$

D) $(-\frac{1}{5},0)$



10.

For any three positive real numbers a,b and c. If 9(25a2+b2)+25(c2-3ac)  =15b (3a+c), then


A) b,c and a are in GP

B) b,c and a are in AP

C) a,b and c are in AP

D) a, b and c are in GP



<<1234>>