Answer:
Option B
Explanation:
We have, $I_{n}=\int_{}^{} tan^{n}x dx$
$\therefore I_{n}+I_{n+2}=\int_{}^{}\tan^{n}x dx+\int_{}^{}tan^{n} x dx$
$=\int_{}^{}\tan^{n}x (1+tan^{2} x) dx$
$=\int_{}^{}\tan^{n}x \sec ^{2}x dx$
$=\frac{\tan^{n+1}x}{n+1}+C$
Put n=4, we get $I_{4}+I_{6}=\frac{\tan^{5}x}{5}+C$
$\therefore a=\frac{1}{5}$ and $ b=0$