Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If a hyperbola passes through the point P(2,3) and has foci at (± 2,0), then the tangent to this hyperbola at P also passes through the point


A) (32,23)

B) (22,33)

C) (3,2)

D) (2,3)

Answer:

Option B

Explanation:

Let the equation of hyperbola be

x2a2y2b2=1

       ae=2a2e2=4

a2+b2=4

b2=4a2

    x2a2y24a2=1

  Since (2,3) lie on hyperbola

    2a234a2=1

          82a23a2=a2(4a2)

   85a2=4a2a4

     a49a2+8=0

     (a48)(a41)=0

     a4=8,a4=1

     a=1

   Now equation of hyperbola is 

x21y23=1

  Equation of tangent at (2,3) is given by

          2x3y3=1

      2xy3=1

which passes through the point (22,33