Answer:
Option B
Explanation:
Let the equation of hyperbola be
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\therefore$ $ae=2\Rightarrow a^{2}e^{2}=4$
$\Rightarrow a^{2}+b^{2}=4$
$\Rightarrow b^{2}=4-a^{2}$
$\therefore$ $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{4-a^{2}}=1$
Since ($\sqrt{2},\sqrt{3}$) lie on hyperbola
$\therefore$ $\frac{2}{a^{2}}-\frac{3}{4-a^{2}}=1$
$\Rightarrow$ $8-2a^{2}-3a^{2}=a^{2}(4-a^{2})$
$\Rightarrow$ $8-5a^{2}=4a^{2}-a^{4}$
$\Rightarrow$ $a^{4}-9a^{2}+8=0$
$\Rightarrow$ $(a^{4}-8)(a^{4}-1)=0$
$\Rightarrow$ $a^{4}=8,a^{4}=1$
$\therefore$ a=1
Now equation of hyperbola is
$\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$
$\therefore$ Equation of tangent at ($\sqrt{2},\sqrt{3}$) is given by
$\sqrt{2}x-\frac{\sqrt{3}y}{3}=1$
$\Rightarrow$ $\sqrt{2}x-\frac{y}{\sqrt{3}}=1$
which passes through the point ($2\sqrt{2},3\sqrt{3}$)