Answer:
Option B
Explanation:
Let the equation of hyperbola be
x2a2−y2b2=1
∴ ae=2⇒a2e2=4
⇒a2+b2=4
⇒b2=4−a2
∴ x2a2−y24−a2=1
Since (√2,√3) lie on hyperbola
∴ 2a2−34−a2=1
⇒ 8−2a2−3a2=a2(4−a2)
⇒ 8−5a2=4a2−a4
⇒ a4−9a2+8=0
⇒ (a4−8)(a4−1)=0
⇒ a4=8,a4=1
∴ a=1
Now equation of hyperbola is
x21−y23=1
∴ Equation of tangent at (√2,√3) is given by
√2x−√3y3=1
⇒ √2x−y√3=1
which passes through the point (2√2,3√3)