Answer:
Option C
Explanation:
We have $f(x)=\frac{x}{1+x^{2}}$
$\therefore$ $f(\frac{1}{x})=\frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}=\frac{x}{1+x^{2}}=f(x)$
$\therefore$ $f(\frac{1}{2})=f(2) $ or $f(\frac{1}{3})=f(3) $ and so on
So, f(x) is many -one function
Again , let y=f(x)
$\Rightarrow$ $y=\frac{x}{1+x^{2}}$
$\Rightarrow$ $y+x^{2}y=x$
$\Rightarrow$ $yx^{2}-x+y=0$
As, $x\epsilon R
$\therefore$ $(-1)^{2}-4(y)(y)\geq0$
$\Rightarrow$ $1-4y^{2}\geq 0$
$\Rightarrow$ $y\epsilon [\frac{-1}{2},\frac{1}{2}]$
$\therefore$ Range= Codomain= $ [\frac{-1}{2},\frac{1}{2}]$
So, f(x) is surjective.
Hence , f(x) is surjective but not injective.