Answer:
Option C
Explanation:
We have f(x)=x1+x2
∴ f(1x)=1x1+1x2=x1+x2=f(x)
∴ f(12)=f(2) or f(13)=f(3) and so on
So, f(x) is many -one function
Again , let y=f(x)
⇒ y=x1+x2
⇒ y+x2y=x
⇒ yx2−x+y=0
As, $x\epsilon R
∴ (−1)2−4(y)(y)≥0
⇒ 1−4y2≥0
⇒ yϵ[−12,12]
∴ Range= Codomain= [−12,12]
So, f(x) is surjective.
Hence , f(x) is surjective but not injective.