Answer:
Option C
Explanation:
We have,
225a2+9b2+25c2-75ac-45ab-15bc=0
$\Rightarrow (15a)^{2}+(3b)^{2}+(5c)^{2}-(15a)(5c)-(15a)(3b)-(3b)(5c)=0$
$\Rightarrow \frac{1}{2}[(15a-3b)^{2}+(3b-5c)^{2}+(5c-15a)^{2}]=0$
$\Rightarrow 15a=3b,3b=5c $ and $5c=15a$
$\therefore$ 15a=3b=5c
$\Rightarrow \frac{a}{1}=\frac{b}{5}=\frac{c}{3}=\lambda(say)$
$\Rightarrow a=\lambda,b=5\lambda ,c=3\lambda$
Hence, a,b and c are in A.P