Answer:
Option D
Explanation:
Let the degree of association of acetic acid (CH3COOH) in benzene is $\alpha$ then
$2CH_{3}COOH\rightleftarrows (CH_{3}COOH)_{2}$
initial moles 1 0
Moles at equilibrium 1- $\alpha$ $\frac{\alpha}{2}$
$\therefore$ Total moles = $1-\alpha+\frac{\alpha}{2}=1-\frac{\alpha}{2}$
or i $=1-\frac{\alpha}{2}$
Now, depression in freezing point (Δ Tf ) is given as
Δ Tf = i Kf m ...........(i)
where, Kf = molal depression constant or cryoscopic constant
m=molality
Molality = number of moles of solute / weight of solvent (in kg )
$=\frac{0.2}{60}\times\frac{1000}{20}$
Putting the values in Eq. (i)
$\therefore$ $0.45 =[1-\frac{\alpha}{2}](5.12)[\frac{0.2}{60}\times\frac{1000}{20}]$
$1-\frac{\alpha}{2}= \frac{0.45\times 60\times 20}{5.12\times0.2\times1000}$
$\Rightarrow$ $1-\frac{\alpha}{2}$ =0.527 $\Rightarrow$ $\frac{\alpha}{2}=1-0.527$
$\therefore$ $\alpha$ =0.946
The percentage of association =94.6 %