Answer:
Option A
Explanation:
For elastic collision
Pbefore collision =Pafter collsion
$mv=mv_{A}+\frac{m}{2}v_{B}$
$2v=2v_{A}+2v_{B}$ .........(i)
Now, coefffficent of restitution,
$ e= \frac{v_{B}-v_{A}}{u_{A}-v_{B}}$
Here uB = 0 ( particle at rest) and for elastic collisione= 1
$\therefore$ $1= \frac{v_{B}-v_{A}}{v}\Rightarrow v =v_{B}-v_{A}$ .............(ii)
From Eq .(i) and Eq .(ii)
$v_{A}=\frac{v}{3}$ and $v_{B}=\frac{4v}{3}$
Hence, $\frac{\lambda_{A}}{\lambda_{B}}=\frac{(\frac{h}{mV_{A}})}{\frac{h}{\frac{m}{2}V_{B}}}=\frac{V_{B}}{2V_{A}}=\frac{4/3}{2/3}=2$