Answer:
Option B
Explanation:
We have e =$\frac{1}{2}$ and $\frac{a}{e}$=4
$\therefore$ a=2
Now, $b^{2}=a^{2}(1-e^{2})=(2)^{2}[1-(\frac{1}{2})^{2}]$
= $4(1-\frac{1}{4})=3\Rightarrow b=\sqrt{3}$
$\therefore$ Equation of the ellipse is
$\frac{x^{2}}{(2)^{2}}+\frac{y^{2}}{(\sqrt{3})^{2}}=1$
$\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
Now, the equation of normal at (1,$\frac{3}{2}$) is
$\frac{a^{2}x}{x_{1}}-\frac{b^{2}y}{y_{1}}=a^{2}-b^{2}$
$\Rightarrow\frac{4x}{1}-\frac{3y}{(3/2)}=4-3$
$\Rightarrow 4x-2y=1$