1)

The eccentricity of an ellipse whose centre is at the orgin is 1/2 . If one of its directrices is x=-4, then the equation of the normal to it at (1, 32) is 


A) 2y-x=2

B) 4x-2y=1

C) 4x+2y=7

D) x+2y=4

Answer:

Option B

Explanation:

We have e =12   and ae=4

    a=2

  Now, b2=a2(1e2)=(2)2[1(12)2]

4(114)=3b=3

   Equation of the ellipse is

            x2(2)2+y2(3)2=1

x24+y23=1

  Now, the equation of normal at (1,32) is

       a2xx1b2yy1=a2b2

4x13y(3/2)=43

  4x2y=1