<<45678
36.

Perpendicular are drawn  from points on the line   $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the  plane x+y+z=3 . The feet of perpendicular lie on the line


A) $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$

B) $\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$

C) $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$

D) $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$



37.

For a>b>c>0, the distance between (1,1)  and the point of intersection of the lines ax+by+c=0  and bx+ay+c=0 is less than 

$2\sqrt{2}$  then 


A) a+b-c >0

B) a-b+c<0

C) a-b+c>0

D) a+b-c<0



38.

Let complex numbers $\alpha$  and $\frac{1}{\alpha}$ lies on circles   $(x-x_{0})^{2}+(y-y_{0})^{2}=r^{2} $  and 

$(x-x_{0})^{2}+(y-y_{0})^{2}=4r^{2} $ respectively.If z0=x0+iy0 satisfies the equation   2|z0|2=r2+2 , then |$\alpha$|  is equal to

 


A) $\frac{1}{\sqrt{2}}$

B) $\frac{1}{2}$

C) $\frac{1}{\sqrt{7}}$

D) $\frac{1}{3}$



39.

Let   $PR=3\hat{i}+\hat{j}-2\hat{k}$   and  $SQ=\hat{i}-3\hat{j}-4\hat{k}$ determine diagonals of a parallelogram PQRS and

 $PT=\hat{i}+2\hat{j}+3\hat{k}$   be another vector . Then, the volume  of the parallelopiped determined by the vectors PT,PQ and PS is


A) 5

B) 20

C) 10

D) 30



40.

The value of $cot \left\{\sum_{n=1}^{23}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right\}$  is 


A) $\frac{23}{25}$

B) $\frac{25}{23}$

C) $\frac{23}{24}$

D) $\frac{24}{23}$



<<45678