1)

For a>b>c>0, the distance between (1,1)  and the point of intersection of the lines ax+by+c=0  and bx+ay+c=0 is less than 

$2\sqrt{2}$  then 


A) a+b-c >0

B) a-b+c<0

C) a-b+c>0

D) a+b-c<0

Answer:

Option A

Explanation:

Concept involved Application of inequality sum and difference along with lengths of perpendicular  . For this type of questions involving inequality we should always check all options.

Situation  analysis check all inequalities according to options and use length of perpendicular from the point (x1,y1) to ax+by+c=0

 i.e,   $\frac{|ax_{1}+by_{1}+c|}{\sqrt{a^{2}+b^{2}}}$

   As, a>b>c>0

  a-c>0  and b>0

 $\Rightarrow$ a+b-c >0  ......(i)

  a-b >0 and c>0

 a+c-b>0  .......(ii)

 $\therefore$   (a) and (c) is correct

Also the point of intersection  for  ax+by+c=0 and bx+ay+c=0

 i.e,    $\left(\frac{-c}{a+b},\frac{-c}{a+b}\right)$

  The distance between (1,1) and 

                      $\left(\frac{-c}{a+b},\frac{-c}{a+b}\right)$

 i.e, less than  $2\sqrt{2}$ 

$\Rightarrow\sqrt{\left(1+\frac{c}{a+b}\right)^{2}+\left(1+\frac{c}{a+b}\right)^{2}}<2\sqrt{2}$

    $\Rightarrow\left(\frac{a+b+c}{a+b}\right)\sqrt{2}<2\sqrt{2}$

$\Rightarrow $   a+b+c <2a+2b

   or a+b-c >0

  From Eqs.(i) and (ii) option (c) is correct.