Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   PR=3ˆi+ˆj2ˆk   and  SQ=ˆi3ˆj4ˆk determine diagonals of a parallelogram PQRS and

 PT=ˆi+2ˆj+3ˆk   be another vector . Then, the volume  of the parallelopiped determined by the vectors PT,PQ and PS is


A) 5

B) 20

C) 10

D) 30

Answer:

Option C

Explanation:

 Concept involved . it involves law of   parallelogram and volume of parallelopiped . i.e,

 a+b=p  and b-a =q

              a=pq2

 and b=p+q2

1042021327_m21.JPG

  

i.e, if p and q are diagonals of parallelograms , then its sides are pq2  and p+q2

Situation analysis

 After finding the sides of parallelogram we should find volume of parallelopiped i.e, [a,b]

1042021670_m22.JPG

 HERE, sides of parallelogram are PQ and PS

 where,  PQ=PR+SQ2

  =PQ=(3ˆi+ˆj2ˆk)+(ˆi3ˆj4ˆk)2

PQ=2ˆiˆj3ˆk

 and PS=PRSQ2

   = PS=(3ˆi+ˆj2ˆk)(ˆi3ˆj4ˆk)2

 PS =ˆi+2ˆj+ˆk

      Volume of parallelopiped

  =[PT PQ PS]

 =  [123213121]

  =1(-1+6)-2(2+3)+3(4+1)

   =5-10+15=10