Answer:
Option B
Explanation:
Concept involved difference series , when ever , we have summation involving more than 3 terms we should always covert into diferences
e.g, ∑5r=11r(r+1)=11.(2)+12.(3)+13.(4)+14.5+15.6
=2−11.(2)+3−22.(3)+4−33.4+5−44.5+6−55.6
=(1−12)+(12−13)+(13−14)+(14−15)+(15−16)=1−16=56
Situation Analysis
Convert into
tan−1x−tan−1y=tan−1(x−y1+xy)
cot(∑23n=1cot−1(1+∑nn=12k))
cot(∑23n=1cot−1(1+2+4+6+8...+2n))
⇒cot(∑23n=1cot−1(1+n(n+1)))
⇒cot(∑23n=1tan−111+n(n+1))
⇒cot(∑23n=1tan−1(n+1)−n1+n(n+1))
⇒cot(∑23n=1tan−1(n+)−tan−1lnn)
⇒cot(tan−12−tan−11)+(tan−13−tan−12)+(tan−14−tan−13)+ ..............+(tan−124−tan−123)
⇒cot(tan−124−tan−11)
⇒cot(tan−124−11+24−(1))
⇒cot(tan−12325)
= cot(cot−12523)
=2523