1)

The value of cot{23n=1cot1(1+nk=12k)}  is 


A) 2325

B) 2523

C) 2324

D) 2423

Answer:

Option B

Explanation:

Concept involved difference series , when ever , we have summation involving  more than 3 terms we should always covert into diferences

 e.g,  5r=11r(r+1)=11.(2)+12.(3)+13.(4)+14.5+15.6

 =211.(2)+322.(3)+433.4+544.5+655.6

 =(112)+(1213)+(1314)+(1415)+(1516)=116=56

 Situation Analysis

    Convert into

  tan1xtan1y=tan1(xy1+xy)

cot(23n=1cot1(1+nn=12k))

cot(23n=1cot1(1+2+4+6+8...+2n))

cot(23n=1cot1(1+n(n+1)))

cot(23n=1tan111+n(n+1))

cot(23n=1tan1(n+1)n1+n(n+1))

 cot(23n=1tan1(n+)tan1lnn)

   cot(tan12tan11)+(tan13tan12)+(tan14tan13)+   ..............+(tan124tan123)

cot(tan124tan11)

cot(tan12411+24(1))

           cot(tan12325)

   = cot(cot12523)

    =2523