Processing math: 100%


1)

Perpendicular are drawn  from points on the line   x+22=y+11=z3 to the  plane x+y+z=3 . The feet of perpendicular lie on the line


A) x5=y18=z213

B) x2=y13=z25

C) x4=y13=z27

D) x2=y17=z25

Answer:

Option D

Explanation:

Concept involved

  To find the foot of perpendicular and find its locus

 Formula used

 Foot  of perpendicular form  (x1,y1,z1)   to ax+by+cz+d=0 be    (x2,y2,z2)

  then

x2x1a=y2y1b=z2z1a

                               = (ax1+by1+cz1+d)a2+b2+c2

      Any point on,     x+22=y+11=z3=λ

                     x=2λ2,y=λ1,z=3λ

Let focus of perpendicular from   (2λ2,λ1,3λ)

 to x+y+z=3  be ((x2,y2,z2))

        x2(2λ2)1=y2(λ1)1=z2(3λ)1

   =  (2λ2λ1+3λ3)1+1+1

               =  x22λ+2=y2+λ+1

   =  z23λ=24λ3

         x2=2λ3     ,  y2=17λ3z2=2+5λ3

 λ=x202/3=y217/3=z225/3

  foot  of perpendicular lie on

                 x2/3=y17/3=z25/3

   x2=y17=z25