Answer:
Option D
Explanation:
Concept involved
To find the foot of perpendicular and find its locus
Formula used
Foot of perpendicular form (x1,y1,z1) to ax+by+cz+d=0 be (x2,y2,z2)
then
x2−x1a=y2−y1b=z2−z1a
= −(ax1+by1+cz1+d)a2+b2+c2
Any point on, x+22=y+1−1=z3=λ
⇒x=2λ−2,y=λ−1,z=3λ
Let focus of perpendicular from (2λ−2,λ−1,3λ)
to x+y+z=3 be ((x2,y2,z2))
∴ x2−(2λ−2)1=y2−(−λ−1)1=z2−(3λ)1
= −(2λ−2−λ−1+3λ−3)1+1+1
= x2−2λ+2=y2+λ+1
= z2−3λ=2−4λ3
∴ x2=2λ3 , y2=1−7λ3, z2=2+5λ3
⇒λ=x2−02/3=y2−1−7/3=z2−25/3
∴ foot of perpendicular lie on
x2/3=y−1−7/3=z−25/3
⇒x2=y−1−7=z−25