Answer:
Option A
Explanation:
$_{84}Po^{210}\rightarrow_{2}He^{4}+_{84}Pb^{206}$
Mass defect $\triangle m=(m_{po}-M_{He}-m_{pb})$ =0.005818 u
$\therefore$ $Q=(\triangle m)(931.48)MeV$
=5.4193 MeV=5419 keV
$\alpha$ ← →Pb
from conservation of linear momentum,
ppb= p$\alpha$
$\therefore$ $\sqrt{2m_{pb}k_{pb}}=\sqrt{2m_{\alpha}k_{\alpha}}$
or
$\frac{k_{\alpha}}{k_{pb}}=\frac{m_{pb}}{m_{\alpha}}=\frac{206}{4}$
$\therefore$ $k_{\alpha}=\left(\frac{206}{206+4}\right)(k_{total})$
$=\left(\frac{206}{210}\right)(5419)=5316 keV$