Answer:
Option C
Explanation:
Concept involved intersection of circles , the basic concept is to equations simulataneously and using properties of modules of complex numbers.
Formula used |z|2=z.¯z
and |z1−z2|2=(z1−z2)(¯z1−¯z2)
= |z1|2−z1¯z2−z2¯z1+|z2|2
Here,
(x−x0)2+(y−y0)2=r2 and
(x−x0)2+(y−y0)2=4r2 could be written as,
|z−z0|2=r2 and |z−z0|2=4r2
since ,α and 1¯α lies on first and second respectively,
∴ |α−z0|2=r2 and|1¯α−z0|2=4r2
⇒ (α−z0)(¯α−¯z0)=r2
⇒ |α|2−z0¯α−¯z0α+|z0|2=r2 .....(i)
and |1¯α−z0|2=4r2
⇒ (1¯α−z0)(1α−¯z0)=4r2
⇒ 1|α|2−z0α−¯z0¯α+|z0|2=4r2
Since |α|2=α.α
⇒ 1|α|2−z0.¯α|α|2−¯z0|α|2α+|z0|2=4r2
⇒ 1−z0¯α−¯z0α+|α|2|z0|2=4r2|α|2 ...(ii)
On substracting Eqs (i) and (ii) , we get
(|α|2−1)+|z0|2(1−|α|2)
= r2(1−4|α|2)
⇒ (|α|2−1)(1−|z0|2)=r2(1−4|α|2)
⇒ (|α|2−1)(1−r2+22)
=r2(1−4|α|2)
Given, |z0|2=r2+22
⇒ (|α|2−1).(−r22)=r2(1−4|α|2)
⇒ |α|2−1=−2+8|α|2
⇒ 7|α|2=1
∴ |α|=1√7