Processing math: 100%


1)

Let complex numbers α  and 1α lies on circles   (xx0)2+(yy0)2=r2  and 

(xx0)2+(yy0)2=4r2 respectively.If z0=x0+iy0 satisfies the equation   2|z0|2=r2+2 , then |α|  is equal to

 


A) 12

B) 12

C) 17

D) 13

Answer:

Option C

Explanation:

Concept involved intersection of circles , the basic concept is to equations simulataneously and using properties of modules of complex numbers.

 Formula used  |z|2=z.¯z

 and   |z1z2|2=(z1z2)(¯z1¯z2)

|z1|2z1¯z2z2¯z1+|z2|2

  Here, 

(xx0)2+(yy0)2=r2  and 

(xx0)2+(yy0)2=4r2    could be written as,

   |zz0|2=r2   and  |zz0|2=4r2

 since ,α and 1¯α lies on first and second  respectively,

       |αz0|2=r2   and|1¯αz0|2=4r2

            (αz0)(¯α¯z0)=r2

         |α|2z0¯α¯z0α+|z0|2=r2 .....(i)

and     |1¯αz0|2=4r2

     (1¯αz0)(1α¯z0)=4r2

           1|α|2z0α¯z0¯α+|z0|2=4r2

Since  |α|2=α.α

     1|α|2z0.¯α|α|2¯z0|α|2α+|z0|2=4r2

     1z0¯α¯z0α+|α|2|z0|2=4r2|α|2 ...(ii)

 On substracting Eqs (i) and (ii) , we get

   (|α|21)+|z0|2(1|α|2)

                                             = r2(14|α|2)

       (|α|21)(1|z0|2)=r2(14|α|2)

           (|α|21)(1r2+22)

                                                            =r2(14|α|2)

Given,     |z0|2=r2+22

        (|α|21).(r22)=r2(14|α|2)    

   |α|21=2+8|α|2

       7|α|2=1

      |α|=17