<<12345>>
16.

Let   $w=\frac{\sqrt{3}+i}{2}$  and   $P= \left\{ W^{n}:n=1,2,3...\right\}$   Further

  $H_{1}= \left\{ z \epsilon C;Rez>\frac{1}{2}\right\}$     and

$H_{2}= \left\{ z \epsilon C;Rez<-\frac{1}{2}\right\} $

where C is the set of all complex numbers, if   $z_{1}\in P\cap H_{1},z_{2}\in P\cap H_{2}$    and O represents the origin, then   $\angle z_{1}Oz_{2}$ is equal to 


A) $\frac{\pi}{2}$

B) $\frac{\pi}{6}$

C) $\frac{2\pi}{3}$

D) $\frac{5\pi}{6}$



17.

 In a $\triangle$ PQR, P is the largest angle and  $\cos p=\frac{1}{3}$ . Further in circle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of Pn, QL, and RM are consecutive even integers. Then  possible length(s) of the side(s)  of the triangle is (are)


A) 16

B) 18

C) 24

D) 22



18.

 Two lines L1 :x=5 , $\frac{y}{3-\alpha}=\frac{z}{-2}$    and   $L_{2}:x=\alpha,\frac{y}{-1}=\frac{z}{2-\alpha}$ are coplannar , Then , $\alpha$ can take value(s)


A) 1

B) 2

C) 3

D) 4



19.

Circle (s) touching x-axis at a distance 3 from the origin and having an intercept of length  $2\sqrt{7}$ on the y-axis is (are)


A) $x^{2}+y^{2}-6x+8y+9=0$

B) $x^{2}+y^{2}-6x+7y+9=0$

C) $x^{2}+y^{2}-6x-8y+9=0$

D) $x^{2}+y^{2}-6x-7y+9=0$



20.

 For a ε R ( the set of all real numbers ), a ≠ -1, 

$\lim_{n \rightarrow \infty}\frac{(1^{a}+2^{a}+....+n^{a})}{(n+1)^{a-1}[(na+1)+(na+2)+....+(na+n)]}$

=  $\frac{1}{60}$  . Then ,a is equal to

 


A) 5

B) 7

C) $\frac{-15}{2}$

D) $\frac{-17}{2}$



<<12345>>