Answer:
Option C,D
Explanation:
Concept involved
It is simple representation of points on argand plane and to find the angle between the points
here, $P=W^{n}=\left( \cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)^{n}$
$= \cos\frac{n\pi}{6}+i\sin\frac{n\pi}{6}$
$H_{1}=\left\{Z\in C: Re (z)>\frac{1}{2}\right\}$
$\therefore$ $P\cap H_{1}$ represents those points for which $\cos\frac{n \pi}{6}$ is +ve
$\therefore$ it belongs to I to IV quadrant
$\Rightarrow$ $ z_{1}=P\cap H_{1}=\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$
or $\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}$
$\therefore$ $z_{1}=\frac{\sqrt{3}}{2}+\frac{i}{2} or\frac{\sqrt{3}}{2}-\frac{i}{2}$ .....(i)
Similarly , $ z_{2}=P\cap H_{2}$ i,e. those points for which
$\cos \frac{n\pi}{6}<0$
$\therefore$ $z_{2}=\cos\pi+i\sin\pi,\cos\frac{5\pi}{6}$
$+i\sin\frac{5\pi}{6},\frac{\cos 7\pi}{6}+i\sin\frac{7\pi}{6}$
$\Rightarrow z_{2}=-1, \frac{-\sqrt{3}}{2}+\frac{i}{2},\frac{-\sqrt{3}}{2}-\frac{i}{2}$
Thus, $\angle z{1}Oz_{2}=\frac{2\pi}{3},\frac{5\pi}{6},\pi$