Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

 For a ε R ( the set of all real numbers ), a ≠ -1, 

limn(1a+2a+....+na)(n+1)a1[(na+1)+(na+2)+....+(na+n)]

160  . Then ,a is equal to

 


A) 5

B) 7

C) 152

D) 172

Answer:

Option B,D

Explanation:

Concept involved

 Converting infinite series into definite intergral

 ie     limnh(n)n

 limn1nh(n)r=g(n)f(rn)=f(x)dx

limng(n)n

 where,r/n  is replaced with x

  is replaced with integral

 Here  

limn(1a+2a+....+na)(n+1)a1[(na+1)+(na+2)+....+(na+n)]

160

 limnnr=1ra(n+1)a1[n2a+n(n+1)2]=160

limn2nr=1(rn)a(1+1n)a1.(2na+n+1)

limn1n(2nr=1(rn)a)

                ×limn1(1+1n)a1(2a+1+1n)

 210(xa)dx.11.(2a+1)

  2.(xa+1)10(2a+1).)(a+1)=2(2a+1)(a+1)

      \frac{2}{(2a+1)(a+1)}=\frac{1}{60}

  \Rightarrow(2a+1)(a+1)=120

 \Rightarrow2a^{2}+3a+1-120=0

\Rightarrow2a^{2}+3a-119=0

 \Rightarrow       (2a+17) (a-7)=0

 \Rightarrow     a=7, \frac{-17}{2}