Answer:
Option B,D
Explanation:
Concept involved
Converting infinite series into definite intergral
ie limn→∞h(n)n
limn→∞1n∑h(n)r=g(n)f(rn)=∫f(x)dx
limn→∞g(n)n
where,r/n is replaced with x
∑ is replaced with integral
Here
limn→∞(1a+2a+....+na)(n+1)a−1[(na+1)+(na+2)+....+(na+n)]
= 160
⇒limn→∞∑nr=1ra(n+1)a−1[n2a+n(n+1)2]=160
⇒limn→∞2∑nr=1(rn)a(1+1n)a−1.(2na+n+1)
⇒limn→∞1n(2∑nr=1(rn)a)
×limn→∞1(1+1n)a−1(2a+1+1n)
⇒2∫10(xa)dx.11.(2a+1)
⇒2.(xa+1)10(2a+1).)(a+1)=2(2a+1)(a+1)
∴ \frac{2}{(2a+1)(a+1)}=\frac{1}{60}
\Rightarrow(2a+1)(a+1)=120
\Rightarrow2a^{2}+3a+1-120=0
\Rightarrow2a^{2}+3a-119=0
\Rightarrow (2a+17) (a-7)=0
\Rightarrow a=7, \frac{-17}{2}